hight

Tuesday, July 26, 2016

pengertian dari filtrasi,metode,destruksi,destilasi,ekstraksi dan kromatografi

Filtrasi
Filtrasi adalah pembersihan partikel padat dari suatu fluida dengan melewatkannya pada medium penyaringan, atau septum, yang di atasnya padatan akan terendapkan. Range filtrasi pada industri mulai dari penyaringan sederhana hingga pemisahan yang kompleks. Fluida yang difiltrasi dapat berupa cairan atau gas; aliran yang lolos dari saringan mungkin saja cairan, padatan, atau keduanya. Suatu saat justru limbah padatnyalah yang harus dipisahkan dari limbah cair sebelum dibuang. Di dalam industri, kandungan padatan suatu umpan mempunyai range dari hanya sekedar jejak sampai persentase yang besar. Seringkali umpan dimodifikasi melalui beberapa pengolahan awal untuk meningkatkan laju filtrasi, misal dengan pemanasan, kristalisasi, atau memasang peralatan tambahan pada penyaring seperti selulosa atau tanah diatomae. Oleh karena varietas dari material yang harus disaring beragam dan kondisi proses yang berbeda, banyak jenis penyaring telah dikembangkan, beberapa jenis akan dijelaskan di bawah ini.
Fluida mengalir melalui media penyaring karena perbedaan tekanan yang melalui media tersebut. Penyaring dapat beroperasi pada:
  • Tekanan di atas atmosfer pada bagian atas media penyaring.
  • Tekanan operasi pada bagian atas media penyaring.
  • Vakum pada bagian bawah.
Tekanan di atas atmosfer dapat dilaksanakan dengan gaya gravitasi pada cairan dalam suatu kolom, dengan menggunakan pompa atau blower, atau dengan gaya sentrifugal. Penyaring sentrifugal didiskusikan pada seksi berikutnya pada bab ini. Dalam suatu penyaring gravitasi media penyaring bisa jadi tidak lebih baik daripada saringan (screen) kasar atau dengan unggun partikel kasar seperti pasir. Penyaring gravitasi dibatasi penggunaannya dalam industri untuk suatu aliran cairan kristal kasar, penjernihan air minum, dan pengolahan limbah cair.
Kebanyakan penyaring industri adalah penyaring tekan, penyaring vakum, atau pemisah sentrifugal. Penyaring tersebut beroperasi secara kontinyu atau diskontinyu, tergantung apakah buangan dari padatan tersaring tunak (steady) atau sebentar-sebentar. Sebagian besar siklus operasi dari penyaring diskontinyu, aliran fluida melalui peralatan secara kontinu, tetapi harus dihentikan secara periodik untuk membuang padatan terakumulasi. Dalam saringan kontinyu buangan padat atau fluida tidak dihentikan selama peralatan beroperasi.
Penyaring dibagi ke dalam tiga golongan utama, yaitu penyaring kue (cake), penyaring penjernihan (clarifying), dan penyaring aliran silang (crossflow). Penyaring kue memisahkan padatan dengan jumlah relatif besar sebagai suatu kue kristal atau lumpur, sebagaimana terlihat dalam Gb. 30.4.a. Seringkali penyaring ini dilengkapi peralatan untuk membersihkan kue dan untuk membersihkan cairan dari padatan sebelum dibuang. Penyaring penjernihan membersihkan sejumlah kecil padatan dari suatu gas atau percikan cairan jernih semisal minuman. Partikel padat terperangkap di dalam medium penyaring (Gb. 30.4.b) atau di atas permukaan luarnya. Penyaring penjernihan berbeda dengan saringan biasa, yaitu memiliki diameter pori medium penyaring lebih besar dari partikel yang akan disingkirkan. Di dalam penyaring aliran silang, umpan suspensi mengalir dengan tekanan tertentu di atas medium penyaring (Gb. 30.4.c). Lapisan tipis dari padatan dapat terbentuk di atas medium permukaan, tetapi kecepatan cairan yang tinggi mencegah terbentuknya lapisan. Medium penyaring adalah membran keramik, logam, atau polimer dengan pori yang cukup kecil untuk menahan sebagian besar partikel tersuspensi. Sebagian cairan mengalir melalui medium sebagai filtrat yang jernih, meninggalkan suspensi pekatnya. Pembahasan selanjutnya, suatu penyaring ultra, unit aliran silang berisi membran dengan pori yang sangat kecil, digunakan untuk memisahkan dan memekatkan partikel koloid dan molekul besar.



                                                         Metode Destruksi
Destruksi merupakan suatu perlakuan pemecahan senyawa menjadi unsur-unsurnya sehingga dapat dianalisis. Istilah destruksi ini disebut juga perombakan, yaitu dari bentuk organik logam menjadi bentuk logam-logam anorganik. Pada dasarnya ada dua jenis destruksi yang dikenal dalam ilmu kimia yaitu destruksi basah  (oksida basah) dan destruksi kering (oksida kering). Kedua destruksi ini memiliki teknik pengerjaan dan lama pemanasan atau pendestruksian yang berbeda.

Metode Destruksi Basah
Destruksi basah adalah perombakan sampel dengan asam-asam kuat baik tunggal maupun campuran, kemudian dioksidasi dengan menggunakan zat oksidator. Pelarut-pelarut yang dapat digunakan untuk destruksi basah antara lain asam nitrat, asam sulfat, asam perklorat, dan asam klorida. Kesemua pelarut tersebut dapat digunakan baik tunggal maupun campuran. Kesempurnaan destruksi ditandai dengan diperolehnya larutan jernih pada larutan destruksi, yang menunjukkan bahwa semua konstituen yang ada telah larut sempurna atau perombakan senyawa-senyawa organik telah berjalan dengan baik. Senyawa-senyawa garam yang terbentuk setelah destruksi merupakan senyawa garam yang stabil dan disimpan selama beberapa hari. Pada umumnya pelaksanaan kerja destruksi basah dilakukan secara metode Kjeldhal. Dalam usaha pengembangan metode telah dilakukan modifikasi dari peralatan yang digunakan (Raimon, 1993).

Metode Destruksi Kering
Destruksi kering merupakan perombakan organic logam di dalam sampel menjadi logam-logam anorganik dengan jalan pengabuan sampel dalam muffle furnace dan memerlukan suhu pemanasan tertentu. Pada umumnya dalam destruksi kering ini dibutuhkan suhu pemanasan antara 400-800oC, tetapi suhu ini sangat tergantung pada jenis sampel yang akan dianalisis. Untuk menentukan suhu pengabuan dengan system ini terlebih dahulu ditinjau jenis logam yang akan dianalisis. Bila oksida-oksida logam yang terbentuk bersifat kurang stabil, maka perlakuan ini tidak memberikan hasil yang baik. Untuk logam Fe, Cu, dan Zn oksidanya yang terbentuk adalah Fe2O3, FeO, CuO, dan ZnO. Semua oksida logam ini cukup stabil pada suhu pengabuan yang digunakan. Oksida-oksida ini kemudian dilarutkan ke dalam pelarut asam encer baik tunggal maupun campuran, setelah itu dianalisis menurut metode yang digunakan.   Contoh yang telah didestruksi, baik destruksi basah maupun kering dianalisis kandungan logamnya. Metode yang digunakaan untuk penentuan logam-logam tersebut yaitu metode Spektrofotometer Serapan Atom (Raimon, 1993). Metode ini digunakan secara luas untuk penentuan kadar unsur logam dalam jumlah kecil atau trace level ( Kealey, D.  dan Haines, P.J. 2002).
Menurut Raimon (1993) ada beberapa faktor yang harus diperhatikan dalam hal menggunakan metode destruksi terhadap sampel, apakah dengan destruksi basah ataukah kering, antara lain:
a.       Sifat matriks dan konstituen yang terkandung di dalamnya.
b.      Jenis logam yang akan dianalisis.
c.       Metode yang akan digunakan untuk penentuan kadarnya
Selain hal-hal di atas, untuk memilih prosedur yang tepat perlu diperhatikan beberapa faktor antara lain: waktu yang diperlukan untuk analisis, biaya yang diperlukan, ketersediaan bahan kimia, dan sensitivitas metode yang digunakan.
Menurut Sumardi (1981: 507), metode destruksi basah lebih baik daripada cara kering karena tidak banyak bahan yang hilang dengan suhu pengabuan yang sangat tinggi. Hal ini merupakan salah satu faktor mengapa cara basah lebih sering digunakan oleh para peneliti. Di samping itu destruksi dengan cara basah biasanya dilakukan untuk memperbaiki cara kering yang biasanya memerlukan waktu yang lama.
Sifat dan karakteristik asam pendestruksi yang sering digunakan antara lain:
1)      Asam sulfat pekat sering ditambahkan ke dalam sampel untuk mempercepat terjadinya oksidasi. Asam sulfat pekat merupakan bahan pengoksidasi yang kuat. Meskipun demikian waktu yang diperlukan untuk mendestruksi masih cukup lama.
2)      Campuran asam sulfat pekat dengan kalium sulfat pekat dapat dipergunakan untuk mempercepat dekomposisi sampel. Kalium sulfat pekat akan menaikkan titik didih asam sulfat pekat sehingga dapat mempertinggi suhu destruksi sehingga proses destruksi lebih cepat.
3)      Campuran asam sulfat pekat dan asam nitrat pekat banyak digunakan untuk mempercepat proses destruksi. Kedua asam ini merupakan oksidator yang kuat. Dengan penambahan oksidator ini akan menurunkan suhu destruksi sampel yaitu pada suhu 350 0C, dengan demikian komponen yang dapat menguap atau terdekomposisi pada suhu tinggi dapat dipertahankan dalam abu yang berarti penentuan kadar abu lebih baik.
4)      Asam perklorat pekat dapat digunakan untuk bahan yang sulit mengalami oksidasi, karena perklorat pekat merupakan oksidator yang sangat kuat. Kelemahan dari perklorat pekat adalah sifat mudah meledak (explosive) sehingga cukup berbahaya, dalam penggunaan harus sangat hati-hati.
5)      Aqua regia yaitu campuran asam klorida pekat dan asam nitrat pekat dengan perbandingan volume 3:1 mampu melarutkan logam-logam mulia seperti emas dan platina yang tidak larut dalam HCl pekat dan HNO3 pekat. Reaksi yang terjadi jika 3 volume HCl pekat dicampur dengan 1 volume HNO3 pekat:
3 HCl(aq) + HNO3(aq)                  Cl2(g) + NOCl(g) + 2H2O(l)
Gas klor (Cl2) dan gas nitrosil klorida (NOCl) inilah yang mengubah logam menjadi senyawa logam klorida dan selanjutnya diubah menjadi kompleks anion yang stabil yang selanjutnya bereaksi lebih lanjut dengan Cl-.


                                                                         DESTILASI

Destilasi merupakan teknik pemisahan yang didasari atas perbedaan perbedaan titik didik atau titik cair dari masing-masing zat penyusun dari campuran homogen. Dalam proses destilasi terdapat dua tahap proses yaitu tahap penguapan dan dilanjutkan dengan tahap pengembangan kembali uap menjadi cair atau padatan. Atas dasar ini maka perangkat peralatan destilasi menggunakan alat pemanas dan alat pendingin.
Proses destilasi diawali dengan pemanasan, sehingga zat yang memiliki titik didih lebih rendah akan menguap. Uap tersebut bergerak menuju kondenser yaitu pendingin, proses pendinginan terjadi karena kita mengalirkan air kedalam dinding (bagian luar condenser), sehingga uap yang dihasilkan akan kembali cair. Proses ini berjalan terus menerus dan akhirnya kita dapat memisahkan seluruh senyawa-senyawa yang ada dalam campuran homogen tersebut.
Bahan yang dipisahkan dengan metode ini adalah bentuk larutan atau cair, tahan terhadap pemanasan, dan perbedaan titik didihnya tidak terlaludekat. Proses pemisahan yang dilakukan adalah bahan campuran dipanaskan pada suhu diantara titik didih bahan yang diinginkan. Pelarut bahan yang diinginkan akan menguap, uap dilewatkan pada tabung pengembun (kondensor). Uap yang mencair ditampung dalam wadah. Bahan hasil pada proses ini disebut destilat, sedangkan sisanya disebut residu. Contoh destilasi adalah proses penyulingan minyak bumi,penyulingan bio-ethanol, pembuatan minyak kayu putih, dan memurnikan air minum.
Berlaku hanya untuk zat dengan fase cair
Macam-Macam Destilasi :
  1. Distilasi Sederhana, prinsipnya memisahkan dua atau lebih komponen cairan berdasarkan perbedaan titik didih yang jauh berbeda.
  2. Distilasi Fraksionasi (Bertingkat), sama prinsipnya dengan distilasi sederhana, hanya distilasi bertingkat ini memiliki rangkaian alat kondensor yang lebih baik, sehingga mampu memisahkan dua komponen yang memiliki perbedaan titik didih yang berdekatan.
  3. Distilasi Azeotrop : memisahkan campuran azeotrop (campuran dua atau lebih komponen yang sulit di pisahkan), biasanya dalam prosesnya digunakan senyawa lain yang dapat memecah ikatan azeotrop tersebut, atau dengan menggunakan tekanan tinggi.
  4. Distilasi Kering : memanaskan material padat untuk mendapatkan fasa uap dan cairnya. Biasanya digunakan untuk mengambil cairan bahan bakar dari kayu atau batu bata.
  5. Distilasi Vakum: memisahkan dua kompenen yang titik didihnya sangat tinggi, motede yang digunakan adalah dengan menurunkan tekanan permukaan lebih rendah dari 1 atm, sehingga titik didihnya juga menjadi rendah, dalam prosesnya suhu yang digunakan untuk mendistilasinya tidak perlu terlalu tinggi (Van Winkel, 1967).

Kelebihan
Destilasi :
  1. Dapat memisahkan zat dengan perbedaan titik didih yang tinggi.
  2. Produk yang dihasilkan benar-benar murni.
Kekurangan Destilasi :
  1. Hanya dapat memisahkan zat yang memiliki perbedaan titik didih yang besar.
  2. Biaya penggunaan alat ini relatif mahal.
EKSTRAKSI

Ekstraksi adalah proses penarikan suatu zat dengan pelarut. Ekstraksi menyangkut distribusi suatu zat terlarut (solut) diantara dua fasa cair yang tidak saling bercampur. Teknik ekstraksi sangat berguna untuk pemisahan secara cepat dan bersih, baik untuk zat organik atau anorganik, untuk analisis makro maupun mikro. Selain untuk kepentingan analisis kimia, ekstraksi juga banyak digunakan untuk pekerjaan preparatif dalam bidang kimia organik, biokimia, dan anorganik di laboratorium.
Alat yang digunakan berupa corong pisah (paling sederhana), alat ekstraksi soxhlet, sampai yang paling rumit berupa alat counter current craig. Secara umum, ekstraksi adalah proses penarikan suatu zat terlarut dari larutannya di dalam air oleh suatu pelarut lain yang tidak bercampur dengan air. Tujuan ekstraksi ialah memisahkan suatu komponen dari campurannya dengan menggunakan pelarut. Proses ekstraksi dengan pelarut digunakan untuk memisahkan dan isolasi bahan-bahan dari campurannya yang terjadi di alam, untuk isolasi bahan-bahan yang tidak larut dari larutan dan menghilangkan pengotor yang larut dari campuran.
Berdasarkan hal di atas, maka prinsip dasar ekstraksi ialah pemisahan suatu zat berdasarkan perbandingan distribusi zat yang terlarut dalam dua pelarut yang tidak saling melarutkan.

Perbandingan distribusi ini disebut koefisien distribusi (K).
K = konsentrasi zat terlarut dalam pelarut pertama dibagi konsentrasi zat terlarut dalam pelarut kedua

Ekstraksi digolongkan menjadi dua macam ekstraksi yaitu:
1). Ekstraksi jangka pendek atau disebut juga proses pengocokan
Hampir dalam semua reaksi organik, dalam proses pemurniannya selalui melalui proses ekstraksi (penarikan senyawa cair yang akan dimurnikan dari pelarut air oleh pelarut organik dengan cara mengocoknya dalam corong pisah). Pelarut organik yang biasa dipakai untuk melarutkan senyawa organik / ekstraksi ialah eter. Hal ini dikarenakan eter merupakan pelarut yang memiliki sifat inert, mudah melarutkan senyawa-senyawa organik, dan titik didihnya rendah sehingga mudah untuk dipisahkan kembali dengan cara destilasi sederhana. Cara ekstraksi ini biasa dipergunakan dalam :
- Pembuatan ester, untuk memisahkan ester dari pencampurnya.
- Pembuatan anilin, nitrobenzen, kloroform, dan preparat organik cair lainnya.Bahan yang akan dipisahkan dalam suatu campuran akan terdistribusi diantara pencampurnya dan pelarutnya membentuk dua fasa/lapisan. Dengan demikian ekstraksi jangka pendek merupakan proses pengocokan yang dilakukan dengan menggunakan corong pisah, setelah dikocok dengan kuat dengan mencampurkan pelarut yang lebih baik bila didiamkan larutan akan membentuk dua lapisan. Gambar ekstraksi jangka pendek dapat ditunjukan pada gambar di bawah ini:

Cara melakukan ekstraksi jangka pendek (pengocokan) menggunakan corong pisah:
Senyawa cair yang akan diekstraksi dimasukan ke dalam corong pisah, ditambahkan ke dalamnya eter secukupnya, dikocok kuat-kuat untuk memudahkan menarik senyawa tersebut dari pelarut air. Diamkan sebentar sampai terjadi dua lapisan. Kemudian ke dua lapisan tersebut dipisahkan dengan membuka kran corong pisah, lapisan yang bawah akan mengalir ke bawah, ditampung dalam suatu wadah. Sedangkan lapisan atas dibiarkan tertinggal dalam corong pisah. Zat yang terlarut dalam eter (biasanya ada di lapisan atas, sebab berat jenis eter lebih kecil daripada berat jenis air) dikeringkan dengan cara menambahkan zat pengering, disaring masuk ke dalam labu destilasi.

2). Ekstraksi jangka panjang
Ekstraksi jangka panjang biasa dilakukan untuk memisahkan bahan alam yang terdapat dalam tumbuh-tumbuhan atau hewan. Senyawa organik yang terdapat dalam bahan alam seperti kafein dari daun teh dapat diambil dengan cara ekstraksi jangka panjang dengan menggunakan suatu alat ekstraksi yang disebut alat soxhlet.

Cara melakukan ekstraksi jangka panjang menggunakan alat soxhlet:
Susun alat-alat soxhlet seperti yang ditunjukan dalam gambar. Masukan 5 gram zat sampel yang telah dihaluskan ke dalam timbel (bungkus dengan kertas saring) kemudian masukan ke dalam tabung soxhlet. Isi labu dengan pelarut kira-kira 2/3 bagiannya dengan cara memasukan pelarut tersebut melalui pendingin gondok/spiral sampai badan soxhlet terisi setengahnya. Panaskan dengan hati-hati dalam water bath dan refluks selama ± 4 jam (sampai warna pelarut dalam badan soxhlet pada saat kontak dengan cuplikan tidak berubah). Pisahkan pelarut dari zat yang diekstrak dengan mendestilasi pelarut secara langsung menggunakan alat soxhlet, caranya ambil timbel yang mengandung cuplikan kemudian panaskan labu sehingga pelarut yang jernih tertampung pada badan soxhlet kurang lebih 2/3-nya, kemudian masukan pelarut yang sudah dimurnikan ke dalam botol penampung sisa pelarut. Ulangi pemanasan sehingga dalam labu hanya terdapat zat sampel.
Perhatian:
- Zat sampel yang digunakan harus dalam keadaan kering. Hati-hati dalam menggunakan pelarut, perhatikan bagaimana sifat-sifatnya karena kebanyakan pelarut mudah terbakar jika kontak dengan api.
- Cara pengesetan alat harus dimulai dari bawah, sedangkan kalau ingin membuka dimulai dari atas.

Gambar soxhletasi:

[Soxhlet1+ekstraksi.jpg] 
















 KROMATOGRAFI
Kromatografi adalah suatu teknik pemisahan molekul berdasarkan perbedaan pola pergerakan antara fase gerak dan fase diam untuk memisahkan komponen (berupa molekul) yang berada pada larutan.[1] Molekul yang terlarut dalam fase gerak, akan melewati kolom yang merupakan fase diam.[1] Molekul yang memiliki ikatan yang kuat dengan kolom akan cenderung bergerak lebih lambat dibanding molekul yang berikatan lemah.[2] Dengan ini, berbagai macam tipe molekul dapat dipisahkan berdasarkan pergerakan pada kolom.[2]
Setelah komponen terelusi dari kolom, komponen tersebut dapat dianalisis dengan menggunakan detektor atau dapat dikumpulkan untuk analisis lebih lanjut.[2] Beberapa alat-alat analitik dapat digabungkan dengan metode pemisahan untuk analisis secara on-line (on-line analysis) seperti: penggabungan kromatografi gas (gas chromatography) dan kromatografi cair (liquid chromatography) dengan mass spectrometry (GC-MS dan LC-MS), Fourier-transform infrared spectroscopy (GC-FTIR), dan diode-array UV-VIS (HPLC-UV-VIS).[2]
Jenis Kromatografi
Kromatografi Cair (Liquid Chromatography)
Kromatografi cair merupakan teknik yang tepat untuk memisahkan ion atau molekul yang terlarut dalam suatu larutan. Jika larutan sampel berinteraksi dengan fase stasioner, maka molekul-molekul didalamnya berinteraksi dengan fase stasioner; namun interaksinya berbeda dikarenakan adanya perbedaan daya serap (adsorption), pertukaran ion (ion exchange), partisi (partitioning), atau ukuran. Perbedaan ini membuat komponen terpisah satu dengan yang lain dan dapat dilihat perbedaannya dari lamanya waktu transit komponen tersebut melewati kolom.[3] Terdapat beberapa jenis kromatografi cair, diantaranya: reverse phase chromatography, High Performance Liquid Chromatography (HPLC), size exclusion chromatography, serta supercritical fluid chromatography.[4]
Reverse phase chromatography
Reverse phase chromatography merupakan alat analitikal yang kuat dengan memadukan sifat hidrofobik serta rendahnya polaritas fase stasioner yang terikat secara kimia pada padatan inert seperti silika.[4] Metode ini biasa digunakan untuk proses ekstraksi dan pemisahan senyawa yang tidak mudah menguap (non-volatile).[4]
High performance liquid chromatography
High performance liquid chromatography (HPLC) mempunyai prinsip yang mirip dengan reverse phase.[4] Hanya saja dalam metode ini, digunakan tekanan dan kecepatan yang tinggi.[4] Kolom yang digunakan dalam HPLC lebih pendek dan berdiameter kecil, namun dapat menghasilkan beberapa tingkatan equilibrium dalam jumlah besar.[4]

Size exclusion chromatography
Size exclusion chromatography, atau yang dikenal juga dengan gel permeation atau filtration chromatography biasa digunakan untuk memisahkan dan memurnikan protein.[4] Metode ini tidak melibatkan berbagai macam penyerapan dan sangat cepat.[4] Perangkat kromatografi berupa gel berpori yang dapat memisahkan molekul besar dan molekul kecil.[4] Molekul besar akan terelusi terlebih dahulu karena molekul tersebut tidak dapat penetrasi pada pori-pori.[4]
Kromatografi Pertukaran Ion (Ion-Exchange Chromatography)
Kromatografi pertukaran ion (ion-exchange chromatography) biasa digunakan untuk pemurnian materi biologis, seperti asam amino, peptida, protein.[5][6] Metode ini dapat dilakukan dalam dua tipe, yaitu dalam kolom maupun ruang datar (planar).[5] Terdapat dua tipe pertukaran ion, yaitu pertukaran kation (cation exchange) dan pertukaran anion (anion exchange).[6] Pada pertukaran kation, fase stasioner bermuatan negatif; sedangkan pada pertukaran anion, fase stasioner bermuatan positif.[6] Molekul bermuatan yang berada pada fase cair akan melewati kolom.[6] Jika muatan pada molekul sama dengan kolom, maka molekul tersebut akan terelusi.[6] Namun jika muatan pada molekul tidak sama dengan kolom, maka molekul tersebut akan membentuk ikatan ionik dengan kolom.[6] Untuk mengelusi molekul yang menempel pada kolom diperlukan penambahan larutan dengan pH dan kekuatan ionik tertentu.[6] Pemisahan dengan metode ini sangat selektif dan karena biaya untuk menjalankan metode ini murah serta kapasitasnya tinggi, maka metode ini biasa digunakan pada awal proses keseluruhan.[6]

Kromatografi adalah teknik untuk memisahkan campuran menjadi komponennya dengan bantuan perbedaan sifat fisik masing-masing komponen. Alat yang digunakan terdiri atas kolom yang di dalamnya diisikan fasa stasioner (padatan atau cairan). Campuran ditambahkan ke kolom dari ujung satu dan campuran akan bergerak dengan bantuan pengemban yang cocok (fasa mobil). Pemisahan dicapai oleh perbedaan laju turun masing-masing komponen dalam kolom, yang ditentukan oleh kekuatan adsorpsi atau koefisien partisi antara fasa mobil dan fasa diam (stationer).
Komponen utama kromatografi adalah fasa stationer dan fasa mobil dan kromatografi dibagi menjadi beberapa jenis bergantung pada jenis fasa mobil dan mekanisme pemisahannya, seperti ditunjukkan di Tabel 12.1
Tabel 12.1 Klasifikasi kromatografi
Kriteria
Nama
Fasa mobil
Kromatografi cair, kromatografi gas
Kromatografi adsorpsi, kromatografi partisi
Mekanisme
Kromatografi pertukaran ion
kromatografi gel
Fasa stationer
Kromatografi kolom, kromatografi lapis tipis,
kromatografi kertas
Beberapa contoh kromatografi yang sering digunakan di laboratorium diberikan di bawah ini.
a. Kromatografi partisi
Prinsip kromatografi partisi dapat dijelaskan dengan hukum partisi yang dapat diterapkan pada sistem multikomponen yang dibahas di bagian sebelumnya. Dalam kromatografi partisi, ekstraksi terjadi berulang dalam satu kali proses. Dalam percobaan, zat terlarut didistribusikan antara fasa stationer dan fasa mobil. Fasa stationer dalam banyak kasus pelarut diadsorbsi pada adsorben dan fasa mobil adalah molekul pelarut yang mengisi ruang antar partikel yang ter adsorbsi.
Contoh khas kromatografi partisi adalah kromatografi kolom yang digunakan luas karena merupakan sangat efisien untuk pemisahan senyawa organik (Gambar 12.3).
Kolomnya (tabung gela) diisi dengan bahan seperti alumina, silika gel atau pati yang dicampur dengan adsorben, dan pastanya diisikan kedalam kolom. Larutan sampel kemudian diisikan kedalam kolom dari atas sehingga sammpel diasorbsi oleh adsorben. Kemudian pelarut (fasa mobil; pembawa) ditambahkan tetes demi tetes dari atas kolom.
Partisi zat terlarut berlangsung di pelarut yang turun ke bawah (fasa mobil) dan pelarut yang teradsorbsi oleh adsorben (fasa stationer). Selama perjalanan turun, zat terlarut akan mengalami proses adsorpsi dan partisi berulang-ulang. Laju penurunan berbeda untuk masing-masing zat terlarut dan bergantung pada koefisien partisi masing-masing zat terlarut. Akhirnya, zat terlarut akan terpisahkan membentuk beberapa lapisan.
Akhirnya, masing-masing lapisan dielusi dengan pelarut yang cocok untuk memberikan spesimen murninya. Nilai R didefinisikan untuk tiap zat etralrut dengan persamaan berikut.
R = (jarak yang ditempuh zat terlarut) / (jarak yang ditempuh pelarut/fasa mobil).
Gambar 12.3 Diagram skematik kromatografi
b. Kromatografi kertas
Mekanisme pemisahan dengan kromatografi kertas prinsipnya sama dengan mekanisme pada kromatografi kolom. Adsorben dalam kromatografi kertas adalah kertas saring, yakni selulosa. Sampel yang akan dianalisis ditotolkan ke ujung kertas yang kemudian digantung dalam wadah. Kemudian dasar kertas saring dicelupkan kedalam pelarut yang mengisi dasar wadah. Fasa mobil (pelarut) dapat saja beragam. Air, etanol, asam asetat atau campuran zat-zat ini dapat digunakan.
Kromatografi kertas diterapkan untuk analisis campuran asam amino dengan sukses besar. Karena asam amino memiliki sifat yang sangat mirip, dan asam-asam amino larut dalam air dan tidak mudah menguap (tidak mungkin didistilasi), pemisahan asam amino adalah masalah paling sukar yang dihadapi kimiawan di akhir abad 19 dan awal abad 20. Jadi penemuan kromatografi kertas merupakan berita sangat baik bagi mereka.
Kimiawan Inggris Richard Laurence Millington Synge (1914-1994) adalah orang pertama yang menggunakan metoda analisis asam amino dengan kromatografi kertas. Saat campuran asam amino menaiki lembaran kertas secara vertikal karena ada fenomena kapiler, partisi asam amino antara fasa mobil dan fasa diam (air) yang teradsorbsi pada selulosa berlangsung berulang-ulang. Ketiak pelarut mencapai ujung atas kertas proses dihentikan. Setiap asam amino bergerak dari titik awal sepanjang jarak tertentu. Dari nilai R, masing-masing asam amino diidentifikasi.
Kromatografi kertas dua-dimensi (2D) menggunakan kertas yang luas bukan lembaran kecil, dan sampelnya diproses secara dua dimensi dengan dua pelarut.
Gambar 12.4 Contoh hasil kromatografi kertas pigmen dari percobaan

c. Kromatografi gas
Campuran gas dapat dipisahkan dengan kromatografi gas. Fasa stationer dapat berupa padatan (kromatografi gas-padat) atau cairan (kromatografi gas-cair).
Umumnya, untuk kromatografi gas-padat, sejumlah kecil padatan inert misalnya karbon teraktivasi, alumina teraktivasi, silika gel atau saringan molekular diisikan ke dalam tabung logam gulung yang panjang (2-10 m) dan tipis. Fasa mobil adalah gas semacam hidrogen, nitrogen atau argon dan disebut gas pembawa. Pemisahan gas bertitik didih rendah seperti oksigen, karbon monoksida dan karbon dioksida dimungkinkan dengan teknik ini.
Dalam kasus kromatografi gas-cair, ester seperti ftalil dodesilsulfat yang diadsorbsi di permukaan alumina teraktivasi, silika gel atau penyaring molekular, digunakan sebagai fasa diam dan diisikan ke dalam kolom. Campuran senyawa yang mudah menguap dicampur dengan gas pembawa disuntikkan ke dalam kolom, dan setiap senyawa akan dipartisi antara fasa gas (mobil) dan fasa cair (diam) mengikuti hukum partisi. Senyawa yang kurang larut dalam fasa diam akan keluar lebih dahulu.
Metoda ini khususnya sangat baik untuk analisis senyawa organik yang mudah menguap seperti hidrokarbon dan ester. Analisis minyak mentah dan minyak atsiri dalam buah telah dengan sukses dilakukan dengan teknik ini.
Efisiensi pemisahan ditentukan dengan besarnya interaksi antara sampel dan cairannya. Disarankan untuk mencoba fasa cair standar yang diketahui efektif untuk berbagai senyawa. Berdasarkan hasil ini, cairan yang lebih khusus kemudian dapat dipilih. Metoda deteksinya, akan mempengaruhi kesensitifan teknik ini. Metoda yang dipilih akan bergantung apakah tujuannya analisik atau preparatif.
d. HPLC
Akhir-akhir ini, untuk pemurnian (misalnya untuk keperluan sintesis) senyawa organik skala besar, HPLC (high precision liquid chromatography atau high performance liquid chromatography) secara ekstensif digunakan. Bi la zat melarut dengan pelarut yang cocok, zat tersebut dapat dianalisis. Ciri teknik ini adalah penggunaan tekanan tinggi untuk mengirim fasa mobil kedalam kolom. Dengan memberikan tekanan tinggi, laju dan efisiensi pemisahan dapat ditingkatkan dengan besar.
Silika gel atau oktadesilsilan yang terikat pada silika gel digunakan sebagai fasa stationer. Fasa stationer cair tidak populer. Kolom yang digunakan untuk HPLC lebih pendek daripada kolom yang digunakan untuk kromatografi gas. Sebagian besar kolom lebih pendek dari 1 m.
Kromatografi penukar ion menggunakan bahan penukar ion sebagai fasa diam dan telah berhasil digunakan untuk analisis kation, anion dan ion organik.
Latihan
12.1 Distilasi fraktional
Tekanan uap dua cairan A dan B adalah 1,50 x 104 N m-2 dan 3,50 x 104 N m-2 pada 20°C. dengan menganggap campuran A dan B mengikuti hukum Raoult, hitung fraksi mol A bila tekanan uap total adalah 2,90 x 104 N m-2 pada 20°C.
12.1 Jawab
Fraksi mol A, nA, dinyatakan dengan.
(nA x 1,50 x 104) + (1 – nA) x 3,50 x 104 = 2,90 x 104 nA = 0,30

KROMATOGRAFI LAPIS TIPIS
Kromatografi lapis tipis merupakan salah satu analisis kualitatif dari suatu sampel yang ingin dideteksi dengan memisahkan komponen-komponen sampel berdasarkan perbedaan kepolaran.[1]
Prinsip
Prinsip kerjanya memisahkan sampel berdasarkan perbedaan kepolaran antara sampel dengan pelarut yang digunakan.[1] Teknik ini biasanya menggunakan fase diam dari bentuk plat silika dan fase geraknya disesuaikan dengan jenis sampel yang ingin dipisahkan.[1] Larutan atau campuran larutan yang digunakan dinamakan eluen.[1] Semakin dekat kepolaran antara sampel dengan eluen maka sampel akan semakin terbawa oleh fase gerak tersebut.[2]
Visualisasi
Proses berikutnya dari kromatografi lapis tipis adalah tahap visualisasi.[1] Tahapan ini sangat penting karena diperlukan suatu keterampilan dalam memilih metode yang tepat karena harus disesuaikan dengan jenis sampel yang sedang di uji.[1] Salah satu yang dipakai adalah penyemprotan dengan larutan ninhidrin.[3] Ninhidrin (2,2-Dihydroxyindane-1,3-dione) adalah suatu larutan yang akan digunakan untuk mendeteksi adanya gugus amina.[3] Apabila pada sampel terdapat gugus amina maka ninhidrin akan bereaksi menjadi berwarna ungu.[3] Biasanya padatan ninhidirn ini dilarutkan dalam larutan butanol.[3]
Nilai Rf
Jarak antara jalannya pelarut bersifat relatif.[4] Oleh karena itu, diperlukan suatu perhitungan tertentu untuk memastikan spot yang terbentuk memiliki jarak yang sama walaupun ukuran jarak plat nya berbeda.[4] Nilai perhitungan tersebut adalah nilai Rf, nilai ini digunakan sebagai nilai perbandingan relatif antar sampel.[4] Nilai Rf juga menyatakan derajat retensi suatu komponen dalam fase diam sehingga nilai Rf sering juga disebut faktor retensi.[4] Nilai Rf dapat dihitung dengan rumus berikut[4] :
Rf = Jarak yang ditempuh substansi/Jarak yang ditempuh oleh pelarut
Semakin besar nilai Rf dari sampel maka semakin besar pula jarak bergeraknya senyawa tersebut pada plat kromatografi lapis tipis.[5] Saat membandingkan dua sampel yang berbeda di bawah kondisi kromatografi yang sama, nilai Rf akan besar bila senyawa tersebut kurang polar dan berinteraksi dengan adsorbent polar dari plat kromatografi lapis tipis.[5]
Nilai Rf dapat dijadikan bukti dalam mengidentifikasikan senyawa.[5] Bila identifikasi nilai Rf memiliki nilai yang sama maka senyawa tersebut dapat dikatakan memiliki karakteristik yang sama atau mirip.[5] Sedangkan, bila nilai Rfnya berbeda, senyawa tersebut dapat dikatakan merupakan senyawa yang berbeda.[5]

Kromatografi Lapis Tipis

Bagian ini merupakan pengantar ke topik kromatografi lapis tipis. Meskipun anda adalah seorang pemula yang mungkin lebih mengenal kromatografi kertas, penjelasan tentang kromatografi lapis tipis sama mudahnya dengan kromatografi kertas.
Pelaksanaan kromatografi lapis tipis
Latar Belakang

Kromatografi digunakan untuk memisahkan substansi campuran menjadi komponen-komponennya. Seluruh bentuk kromatografi berkerja berdasarkan prinsip ini.

Semua kromatografi memiliki fase diam (dapat berupa padatan, atau kombinasi cairan-padatan) dan fase gerak (berupa cairan atau gas). Fase gerak mengalir melalui fase diam dan membawa komponen-komponen yang terdapat dalam campuran. Komponen-komponen yang berbeda bergerak pada laju yang berbeda. Kita akan membahasnya lebih lanjut.

Pelaksaanan kromatografi lapis tipis menggunakan sebuah lapis tipis silika atau alumina yang seragam pada sebuah lempeng gelas atau logam atau plastik yang keras.

Jel silika (atau alumina) merupakan fase diam. Fase diam untuk kromatografi lapis tipis seringkali juga mengandung substansi yang mana dapat berpendarflour dalam sinar ultra violet, alasannya akan dibahas selanjutnya. Fase gerak merupakan pelarut atau campuran pelarut yang sesuai.

Kromatogram

Kita akan mulai membahas hal yang sederhana untuk mencoba melihat bagaimana pewarna tertentu dalam kenyataannya merupakan sebuah campuran sederhana dari beberapa pewarna.
Sebuah garis menggunakan pinsil digambar dekat bagian bawah lempengan dan setetes pelarut dari campuran pewarna ditempatkan pada garis itu. Diberikan penandaan pada garis di lempengan untuk menunjukkan posisi awal dari tetesan. Jika ini dilakukan menggunakan tinta, pewarna dari tinta akan bergerak selayaknya kromatogram dibentuk.

Ketika bercak dari campuran itu mengering, lempengan ditempatkan dalam sebuah gelas kimia bertutup berisi pelarut dalam jumlah yang tidak terlalu banyak. Perlu diperhatikan bahwa batas pelarut berada di bawah garis dimana posisi bercak berada.

Alasan untuk menutup gelas kimia adalah untuk meyakinkan bawah kondisi dalam gelas kimia terjenuhkan oleh uap dari pelarut. Untuk mendapatkan kondisi ini, dalam gelas kimia biasanya ditempatkan beberapa kertas saring yang terbasahi oleh pelarut. Kondisi jenuh dalam gelas kimia dengan uap mencegah penguapan pelarut.

Karena pelarut bergerak lambat pada lempengan, komponen-komponen yang berbeda dari campuran pewarna akan bergerak pada kecepatan yang berbeda dan akan tampak sebagai perbedaan bercak warna.

Gambar menunjukkan lempengan setalah pelarut bergerak setengah dari lempengan.

Pelarut dapat mencapai sampai pada bagian atas dari lempengan. Ini akan memberikan pemisahan maksimal dari komponen-komponen yang berwarna untuk kombinasi tertentu dari pelarut dan fase diam.

Perhitungan nilai Rf

Jika anda ingin mengetahui bagaimana jumlah perbedaan warna yang telah terbentuk dari campuran, anda dapat berhenti pada bahasan sebelumnya. Namun, sering kali pengukuran diperoleh dari lempengan untuk memudahkan identifikasi senyawa-senyawa yang muncul. Pengukuran ini berdasarkan pada jarak yang ditempuh oleh pelarut dan jarak yang tempuh oleh bercak warna masing-masing.

Ketika pelarut mendekati bagian atas lempengan, lempengan dipindahkan dari gelas kimia dan posisi pelarut ditandai dengan sebuah garis, sebelum mengalami proses penguapan.

Pengukuran berlangsung sebagai berikut:

Nilai Rf untuk setiap warna dihitung dengan rumus sebagai berikut:
Rf=jarak yang ditempuh oleh komponen
jarak yang ditempuh oleh pelarut

Sebagai contoh, jika komponen berwarna merah bergerak dari 1.7 cm dari garis awal, sementara pelarut berjarak 5.0 cm, sehingga nilai Rf untuk komponen berwarna merah menjadi:

Jika anda dapat mengulang percobaan ini pada kondisi yang tepat sama, nilai Rf yang akan diperoleh untuk setiap warna akan selalu sama. Sebagai contoh, nilai Rf untuk warna merah selalu adalah 0.34. Namun, jika terdapat perubahan (suhu, komposisi pelarut dan sebagainya), nilai tersebut akan berubah. Anda harus tetap mengingat teknik ini jika anda ingin mengidentifikasi pewarna yang tertentu. Mari kita lihat bagaimana menggunakan kromatografi lapis tipis untuk menganalisis pada bagian selanjutnya.
Bagaimana halnya jika substansi yang ingin anda analisis tidak berwarna?

Ada dua cara untuk menyelesaikan analisis sampel yang tidak berwarna.

Menggunakan pendarflour

Mungkin anda masih ingat apa yang telah saya sebutkan bahwa fase diam pada sebuah lempengan lapis tipis seringkali memiliki substansi yang ditambahkan kedalamnya, supaya menghasilkan pendaran flour ketika diberikan sinar ultraviolet (UV). Itu berarti jika anda menyinarkannya dengan sinar UV, akan berpendar.

Pendaran ini ditutupi pada posisi dimana bercak pada kromatogram berada, meskipun bercak-bercak itu tidak tampak berwarna jika dilihat dengan mata. Itu berarti bahwa jika anda menyinarkan sinar UV pada lempengan, akan timbul pendaran dari posisi yang berbeda dengan posisi bercak-bercak. Bercak tampak sebagai bidang kecil yang gelap.
Sementara UV tetap disinarkan pada lempengan, anda harus menandai posisi-posisi dari bercak-bercak dengan menggunakan pinsil dan melingkari daerah bercak-bercak itu. Seketika anda mematikan sinar UV, bercak-bercak tersebut tidak tampak kembali.

Penunjukkan bercak secara kimia

Dalam beberapa kasus, dimungkinkan untuk membuat bercak-bercak menjadi tampak dengan jalan mereaksikannya dengan zat kimia sehingga menghasilkan produk yang berwarna. Sebuah contoh yang baik adalah kromatogram yang dihasilkan dari campuran asam amino.

Kromatogram dapat dikeringkan dan disemprotkan dengan larutan ninhidrin. Ninhidrin bereaksi dengan asam amino menghasilkan senyawa-senyawa berwarna, umumnya coklat atau ungu.

Dalam metode lain, kromatogram dikeringkan kembali dan kemudian ditempatkan pada wadah bertutup (seperti gelas kimia dengan tutupan gelas arloji) bersama dengan kristal iodium.

Uap iodium dalam wadah dapat berekasi dengan bercak pada kromatogram, atau dapat dilekatkan lebih dekat pada bercak daripada lempengan. Substansi yang dianalisis tampak sebagai bercak-bercak kecoklatan.

Dalam metode lain, kromatogram dikeringkan kembali dan kemudian ditempatkan pada wadah bertutup (seperti gelas kimia dengan tutupan gelas arloji) bersama dengan kristal iodium.

Uap iodium dalam wadah dapat berekasi dengan bercak pada kromatogram, atau dapat dilekatkan lebih dekat pada bercak daripada lempengan. Substansi yang dianalisis tampak sebagai bercak-bercak kecoklatan.

Penggunaan kromatografi lapis tipis untuk mengidentifikasi senyawa-senyawa

Anggaplah anda mempunyai campuran asam amino dan ingin menemukan asam amino-asam amino tertentu yang terkandung didalam campuran tersebut. Untuk sederhananya, mari kira berasumsi bahwa anda mengetahui bahwa campuran hanya mungkin mengandung lima asam amino.

Setetes campuran ditempatkan pada garis dasar lempengan lapis tipis dan bercak-bercak kecil yang serupa dari asam amino yang telah diketahui juga ditempatkan pada disamping tetesan yang akan diidentifikasi. Lempengan lalu ditempatkan pada posisi berdiri dalam pelarut yang sesuai dan dibiarkan seperti sebelumnya. Dalam gambar, campuran adalah M dan asam amino yang telah diketahui ditandai 1-5.

Bagian kiri gambar menunjukkan lempengan setelah pelarut hampir mencapai bagian atas dari lempengan. Bercak-bercak masih belum tampak. Gambar kedua menunjukkan apa yang terjadi setelah lempengan disemprotkan ninhidrin.
Tidak diperlukan menghitung nilai Rf karena anda dengan mudah dapat membandingkan bercak-bercak pada campuran dengan bercak dari asam amino yang telah diketahui melalui posisi dan warnanya.

Dalam contoh ini, campuran mengandung asam amino 1, 4 dan 5.

Bagaimana jika campuran mengandung lebih banyak asam amino daripada asam amino yang digunakan sebagai perbandingan? Ini memungkinkan adanya bercak-bercak dari campuran yang tidak sesuai dengan asam amino yang dijadikan perbandingan itu. Anda sebaiknya mengulangi eksperimen menggunakan asam amino lain sebagai perbandingan.

Bagaimana kromatografi lapis tipis berkerja?

Fase diam-jel silika

Jel silika adalah bentuk dari silikon dioksida (silika). Atom silikon dihubungkan oleh atom oksigen dalam struktur kovalen yang besar. Namun, pada permukaan jel silika, atom silikon berlekatan pada gugus -OH.
Jadi, pada permukaan jel silika terdapat ikatan Si-O-H selain Si-O-Si. Gambar ini menunjukkan bagian kecil dari permukaan silika.
Permukaan jel silika sangat polar dan karenanya gugus -OH dapat membentuk ikatan hidrogen dengan senyawa-senyawa yang sesuai disekitarnya, sebagaimana halnya gaya van der Waals dan atraksi dipol-dipol..
Fase diam lainnya yang biasa digunakan adalah alumina-aluminium oksida. Atom aluminium pada permukaan juga memiliki gugus -OH. Apa yang kita sebutkan tentang jel silika kemudian digunakan serupa untuk alumina.

Apa yang memisahkan senyawa-senyawa dalam kromatogram?

Ketika pelarut mulai membasahi lempengan, pelarut pertama akan melarutkan senyawa-senyawa dalam bercak yang telah ditempatkan pada garis dasar. Senyawa-senyawa akan cenderung bergerak pada lempengan kromatografi sebagaimana halnya pergerakan pelarut.

Bagaimana cepatnya senyawa-senyawa dibawa bergerak ke atas pada lempengan, tergantung pada:
·         Bagaimana kelarutan senyawa dalam pelarut. Hal ini bergantung pada bagaimana besar atraksi antara molekul-molekul senyawa dengan pelarut.
  • Bagaimana senyawa melekat pada fase diam, misalnya jel silika. Hal ini tergantung pada bagaimana besar atraksi antara senyawa dengan jel silika.
Anggaplah bercak awal mengandung dua senyawa, yang satu dapat membentuk ikatan hidrogen, dan yang lainnya hanya dapat mengambil bagian interaksi van der Waals yang lemah.

Senyawa yang dapat membentuk ikatan hidrogen akan melekat pada jel silika lebih kuat dibanding senyawa lainnya. Kita mengatakan bahwa senyawa ini terjerap lebih kuat dari senyawa yang lainnya. Penjerapan merupakan pembentukan suatu ikatan dari satu substansi pada permukaan.

Penjerapan bersifat tidak permanen, terdapat pergerakan yang tetap dari molekul antara yang terjerap pada permukaan jel silika dan yang kembali pada larutan dalam pelarut.

Dengan jelas senyawa hanya dapat bergerak ke atas pada lempengan selama waktu terlarut dalam pelarut. Ketika senyawa dijerap pada jel silika-untuk sementara waktu proses penjerapan berhenti-dimana pelarut bergerak tanpa senyawa. Itu berarti bahwa semakin kuat senyawa dijerap, semakin kurang jarak yang ditempuh ke atas lempengan.

Dalam contoh yang sudah kita bahas, senyawa yang dapat membentuk ikatan hidrogen akan menjerap lebih kuat daripada yang tergantung hanya pada interaksi van der Waals, dan karenanya bergerak lebih jauh pada lempengan.

Bagaimana jika komponen-komponen dalam campuran dapat membentuk ikatan-ikatan hidrogen?

Terdapat perbedaan bahwa ikatan hidrogen pada tingkatan yang sama dan dapat larut dalam pelarut pada tingkatan yang sama pula. Ini tidak hanya merupakan atraksi antara senyawa dengan jel silika. Atraksi antara senyawa dan pelarut juga merupakan hal yang penting-hal ini akan mempengaruhi bagaimana mudahnya senyawa ditarik pada larutan keluar dari permukaan silika.

Bagaimanapun, hal ini memungkinkan senyawa-senyawa tidak terpisahkan dengan baik ketika anda membuat kromatogram. Dalam kasus itu, perubahan pelarut dapat membantu dengan baik-termasuk memungkinkan perubahan pH pelarut.

Ini merupakan tingkatan uji coba ? jika satu pelarut atau campuran pelarut tidak berkerja dengan baik, anda mencoba pelarut lainnya. (Berikan tingkatan dimana anda dapat berkerja, seseorang telah berkerja keras untuk anda dan anda hanya menggunakan campuran pelarut yang telah anda berikan dan segala sesuatunya akan berkerja dengan sempurna!)



semoga bermanfaat